Modulation of tissue growth heterogeneity by responses to mechanical stress

Publication from the Laboratoire Reproduction et développement des plantes (RDP) in the journal Proceedings of the National Academy of Sciences USA (PNAS) on January 23, 2019. Abstract:  Morphogenesis often yields organs with robust size and shapes, whereas cell growth and deformation feature significant spatiotemporal variability. Here, we investigate whether tissue responses to mechanical signals contribute to resolve this apparent paradox. We built a model of growing tissue made of fiber-like material, which may account for the cytoskeleton, polar cell-cell adhesion, or the extracellular matrix in animals and for the cell wall in plants. We considered the synthesis and remodeling of this material, as well as the modulation of synthesis by isotropic and anisotropic response to mechanical stress. Formally, our model describes an expanding, mechanoresponsive, nematic, and active fluid. We show that mechanical responses buffer localized perturbations, with two possible regimes-hyporesponsive and hyperresponsive-and the transition between the two corresponds to a minimum value of the relaxation time.
account creation

TO READ THIS ARTICLE, CREATE YOUR ACCOUNT

And extend your reading, free of charge and with no commitment.



Your Benefits

  • Access to all content
  • Receive newsmails for news and jobs
  • Post ads

myScience