The Super-Kamiokande detector is a tank 40 metres high and 40 metres in diameter, filled with 50,000 tonnes of ultra-pure water, and carpeted with 13,000 detectors. For its successor Hyper-K, the tank will be larger (Paris’s Notre Dame Cathedral could fit inside it) and have more sensitive detectors. The neutrino beams will also be more powerful.
The Super-Kamiokande detector is a tank 40 metres high and 40 metres in diameter, filled with 50,000 tonnes of ultra-pure water, and carpeted with 13,000 detectors. For its successor Hyper-K, the tank will be larger (Paris's Notre Dame Cathedral could fit inside it) and have more sensitive detectors. The neutrino beams will also be more powerful. Kamioka Observatory, ICRR, The University of Tokyo - We live in a world of matter - because matter overtook antimatter , though they were both created in equal amounts by the Big Bang when our universe began. As featured on the cover of Nature on 16 April 2020, neutrinos and the associated antimatter particles, antineutrinos, are reported to have a high likelihood of differing behaviour that offers a promising path to explaining the asymmetry between matter and antimatter. These observations may explain this mysterious antimatter disappearance. They come from the T2K experiment conducted in Japan and in which three French laboratories are involved, affiliated with the CNRS, École Polytechnique - Institut Polytechnique de Paris, Sorbonne Université and the CEA.
TO READ THIS ARTICLE, CREATE YOUR ACCOUNT
And extend your reading, free of charge and with no commitment.
Your Benefits
- Access to all content
- Receive newsmails for news and jobs
- Post ads